
EnSight’s External 
Command Driver

Computational Engineering International, Inc.
2166 N. Salem Street, Suite 101, Apex, NC 27523
USA • 919-363-0883 • 919-363-0833 FAX
http://www.ceintl.com or http://www.ensight.com
1



 Copyright © 1994 - 2003, Computational Engineering International, Inc. All rights reserved.
Printed in the United States of America.

EN-CD Revision History

This document has been reviewed and approved in accordance with Computational Engineering International, 
Inc. Documentation Review and Approval Procedures.

This document should be used only for Version 7.6 and greater of the EnSight program.

Information in this document is subject to change without notice. This document contains proprietary 
information of Computational Engineering International, Inc. The contents of this document may not be 
disclosed to third parties, copied, or duplicated in any form, in whole or in part, unless permitted by contract or 
by written permission of Computational Engineering International, Inc. The Computational Engineering 
International, Inc. Software License Agreement and Contract for Support and Maintenance Service supersede 
and take precedence over any information in this document.

EnSight® is a registered trademark of Computational Engineering International, Inc. All registered trademarks 
used in this document remain the property of their respective owners.

CEI’s World Wide Web addresses:
 http://www.ceintl.com

or
http://www.ensight.com

Restricted Rights Legend

Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to 
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause 
at DFARS 252.227-7013. Unpublished rights reserved under the Copyright Laws of the United States. 
Contractor/Manufacturer is Computational Engineering International, Inc., 2166 N. Salem Street, Suite 101, 
Apex, NC  27523.

EN-CD:7.6-1 October 2002
EN-CD:7.6-2 April 2003
2



EnSight Command Driver

This document provides information about a communication mechanism which can be used to drive EnSight 
from an external program using EnSight’s command language. The logical steps involved in this process are:

1. Compile your external program with the enscmddriver_comm library.
2. Start EnSight and have it listen for the connection from the external program.
3. Start the external program and issue the connect command within that program.
4. Send commands to EnSight using the enscmddriver_sendmesg routine.
5. Shutdown Ensight.

More detail will now be provided for each of these steps. 

Step 1:
Compile your external program with the enscmddriver.a library.   This library is provided in the EnSight 
distribution, under the client_utilities/cmddriver directory.  Directions for compiling are contained in the 
README file contained in that directory.  Also provided therein is a sample external program (entitled 
enscmddriver.c) which is used to show how to compile, as well as for examples of how to utilize the following 
routines within your external driver:

Step 2:
Start EnSight and have it listen for the connection from the external program.  Normally this will be done 
from your external program and will thus use batch mode to start EnSight.

In batch mode:
ensight7 -X -batch -externalcmds

While not the norm, it is possible to have EnSight start listening for the connection from an interactive session.

Interactively (from the command dialog in EnSight):
test: acceptcmddriver

Ensight will listen on Port 1104 for the connection from the external program.  If a different port is desired, you 
can use the command line option “-externalcmdport #” when starting EnSight.  Replace the # with a 
legitimate (>1024) port number.  Then be sure to use the specified socket in the enscmddriver_connect call 
within your external program.

enscmddriver_connect To establish the connection with EnSight

enscmddriver_sendmesg To send command language to EnSight

enscmddriver_query To query information from EnSight (limited)

enscmddriver_disconnect To disconnect and leave EnSight running (not commonly used)
3



Step 3:
Once EnSight is listening, start the external program and issue the connect command within that 
program.

For the provided enscmddriver sample, this is done as follows:

enscmddriver HOSTNAME

Where, HOSTNAME is the name of the machine running EnSight.  Note, the sample enscmddriver program calls 
the enscmddriver_connect routine to establish the connection.

Step 4:
Send commands to EnSight using the enscmddriver_sendmesg routine.   The commands that you send to 
EnSight using this routine are the same commands that EnSight produces when users are manipulating a model 
with the EnSight Graphical User Interface.  All of these commands are described in the Command Reference 
Manual within EnSight.

Note that the enscmddriver_sendmesg routine returns an ok or ERROR indicating its success or not.

It is possible to play entire command files that are accessible from the machine where the EnSight client is 
running. You can send a “play:” command to specify the name of the command file to use. Commands that are 
played using a file (play:) will execute faster than sending individual commands. The following is a command 
file (amiread.enc) that reads and colors the ami data set that is shipped with EnSight.

VERSION 7.52
data: binary_files_are big_endian
data: format case
data: path /usr/local/CEI/ensight74/data/ami
data: geometry ami.case
data: read
data_partbuild: begin
part: select_default
part: modify_begin
part: elt_representation not_loaded
part: modify_end
data_partbuild: data_type unstructured
data_partbuild: select_begin
1

data_partbuild: select_end
data_partbuild: description
data_partbuild: create
part: select_default
part: modify_begin
part: elt_representation 3D_border_2D_full
part: modify_end
data_partbuild: data_type unstructured
data_partbuild: select_begin
2

data_partbuild: select_end
data_partbuild: description
data_partbuild: create
data_partbuild: end
variables: activate pressure
part: select_all
part: modify_begin
part: colorby_palette pressure
part: modify_end

Your external program could send the command “play: amiread.enc” to Ensight using the 
enscmddriver_sendmesg routine.  Ensight would play the command file, which would read in the model and 
color it by pressure, etc.  It would then return and allow the external program to continue to issue other 
commands, such as would create images, produce VRML, create flipbook or keyframe animation sequences, 
etc.

Additionally, the enscmddriver_query routine can be used to obtain some limited information back from 
EnSight. The current possibilities for this option will be described in the query section below.
4



Step 5:
Shutdown Ensight.   If you did the normal, and started ensight in batch mode - you close the communication 
and get Ensight to stop by sending an exit command with the enscmddriver_sendmesg routine. 

If you happen to be running EnSight interactively, rather than the normal batch mode, and you desire to close 
the connection, but leave EnSight running - you can use the enscmddriver_disconnect routine.

Example
Assuming that you were able to successfully compile our sample external program, enscmddriver, and that 
your machine name was “speedy”, you could do the following:

Start Ensight in batch mode (on your machine named  “speedy”):

> ensight7 -X -batch -externalcmds &

Start the enscmddriver sample routine:

> enscmddriver speedy

Issue the following commands as prompted by the enscmddriver program:

What would you like to do?
play: amiread.enc
What would you like to do?
view: hidden_surface ON
What would you like to do?
savegeom: format vrml
What would you like to do?
savegeom: binary OFF
What would you like to do?
savegeom: save_geometric_entities /tmp/ami
What would you like to do?
exit

Which would read in the ami model using the amiread.enc command file, then turn shading on, then save a 
vrml file in /tmp.  It would then close the communication and cause EnSight to exit.

You will of course be using your own external program, so the actual use of the enscmddriver_connect, and 
enscmddriver_sendmesg routines will be of interest to you.  You can see them being used in the enscmddriver.c 
file. The routine arguments are described in detail in the Routine Descriptions section below.
5



Query Capability

The Ensight external command driver as first implemented with EnSight version 6.2.4, was purely a one-way 
interface.  Namely, the external program could send command language to EnSight, but could not receive any 
type of information back (except for the error flag concerning success or failure of the command).  Starting 
with EnSight 7.6, the capability to query EnSight for certain data has been added.  While initially the scope of 
implemented queries is small, the implementation is general enough that future desirable queries should be 
easily added.  Currently you can query for various transformation and viewport information.

The enscmddriver_query routine is driven by keywords.  According to the keyword, the needed input 
parameters are defined, as well as the returned results.

Note: In the descriptions of the transformation matrices below, the components of a 4 x 4 matrix are:

| a11 a12 a13 a14 |
| a21 a22 a23 a24 |
| a31 a32 a33 a34 |
| a41 a42 a43 a44 |

The Composite Transformation matrix - A combination of the look_at/look_from transform and the
global transformation matrix.

Keyword:
TRANSFORMATION_COMPOSITE_MATRIX

Input:

param_array_cnt = 1
param_array[0] = Viewport number for the desired viewport (zero based)

Return Values:
On Success -> (1)

ret_float_cnt = 16 (4 x 4 matrix)
ret_float_array[0] = a11 ret_float_array[8] = a31
ret_float_array[1] = a12 ret_float_array[9] = a32
ret_float_array[2] = a12 ret_float_array[10] = a32
ret_float_array[3] = a14 ret_float_array[11] = a34
ret_float_array[4] = a21 ret_float_array[12] = a41
ret_float_array[5] = a22 ret_float_array[13] = a42
ret_float_array[6] = a22 ret_float_array[14] = a42
ret_float_array[7] = a24 ret_float_array[15] = a44

On Failure -> (-1)
ret_error_buf contains the error message string

The Translate Transformation matrix

Keyword:
TRANSFORMATION_TRANSLATE_MATRIX

Input:
param_array_cnt = 1
param_array[0] = Viewport number for the desired viewport (zero based)

Return Values:
On Success -> (1)

ret_float_cnt = 16 (4 x 4 matrix)
ret_float_array[0] = a11 ret_float_array[8] = a31
ret_float_array[1] = a12 ret_float_array[9] = a32
ret_float_array[2] = a12 ret_float_array[10] = a32
ret_float_array[3] = a14 ret_float_array[11] = a34
ret_float_array[4] = a21 ret_float_array[12] = a41
ret_float_array[5] = a22 ret_float_array[13] = a42
ret_float_array[6] = a22 ret_float_array[14] = a42
ret_float_array[7] = a24 ret_float_array[15] = a44

On Failure -> (-1)
ret_error_buf contains the error message string
6



The Scale Transformation matrix

Keyword:
TRANSFORMATION_SCALE_MATRIX

Input:
param_array_cnt = 1
param_array[0] = Viewport number for the desired viewport (zero based)

Return Values:
On Success -> (1)

ret_float_cnt = 16 (4 x 4 matrix)
ret_float_array[0] = a11 ret_float_array[8] = a31
ret_float_array[1] = a12 ret_float_array[9] = a32
ret_float_array[2] = a12 ret_float_array[10] = a32
ret_float_array[3] = a14 ret_float_array[11] = a34
ret_float_array[4] = a21 ret_float_array[12] = a41
ret_float_array[5] = a22 ret_float_array[13] = a42
ret_float_array[6] = a22 ret_float_array[14] = a42
ret_float_array[7] = a24 ret_float_array[15] = a44

On Failure -> (-1)
ret_error_buf contains the error message string

The Rotate Transformation matrix

Keyword:
TRANSFORMATION_SCALE_MATRIX

Input:
param_array_cnt = 1
param_array[0] = Viewport number for the desired viewport (zero based)

Return Values:
On Success -> (1)

ret_float_cnt = 16 (4 x 4 matrix)
ret_float_array[0] = a11 ret_float_array[8] = a31
ret_float_array[1] = a12 ret_float_array[9] = a32
ret_float_array[2] = a12 ret_float_array[10] = a32
ret_float_array[3] = a14 ret_float_array[11] = a34
ret_float_array[4] = a21 ret_float_array[12] = a41
ret_float_array[5] = a22 ret_float_array[13] = a42
ret_float_array[6] = a22 ret_float_array[14] = a42
ret_float_array[7] = a24 ret_float_array[15] = a44

On Failure -> (-1)
ret_error_buf contains the error message string

The Lookat Position

Keyword:
TRANSFORMATION_LOOKAT_POSITION

Input:
param_array_cnt = 1
param_array[0] = Viewport number for the desired viewport (zero based)

Return Values:
On Success -> (1)

ret_float_cnt = 3
ret_float_array[0] = x coordinate of lookat point
ret_float_array[1] = y coordinate of lookat point
ret_float_array[2] = z coordinate of lookat point

On Failure -> (-1)
ret_error_buf contains the error message string

The Lookfrom Position

Keyword:
TRANSFORMATION_LOOKFROM_POSITION

Input:
param_array_cnt = 1
param_array[0] = Viewport number for the desired viewport (zero based)

Return Values:
On Success -> (1)

ret_float_cnt = 3
ret_float_array[0] = x coordinate of lookfrom point
ret_float_array[1] = y coordinate of lookfrom point
ret_float_array[2] = z coordinate of lookfrom point

On Failure -> (-1)
ret_error_buf contains the error message string
7



The supplied sample external routine (enscmddriver.c) contains an example of the use of this routine.

Please see the Routine Description section for an explanation of the other arguments to the 
enscmddriver_query routine.

The Center of Transformation

Keyword:
TRANSFORMATION_CENTER_OF

Input:
param_array_cnt = 1
param_array[0] = Viewport number for the desired viewport (zero based)

Return Values:
On Success -> (1)

ret_float_cnt = 3
ret_float_array[0] = x coordinate of center of transformation
ret_float_array[1] = y coordinate of center of transformation
ret_float_array[2] = z coordinate of center of transformation

On Failure -> (-1)
ret_error_buf contains the error message string

The Location of bottom left of Viewport - returned both as screen and as normalized coords

Keyword:
VIEWPORT_LOCATION

Input:
param_array_cnt = 1
param_array[0] = Viewport number for the desired viewport (zero based)

Return Values:
On Success -> (1)

ret_float_cnt = 2
ret_float_array[0] = normalized window x coordinate of bottom left of viewport (0. to 1.)
ret_float_array[1] = normalized window y coordinate of bottom left of viewport (0. to 1.)
ret_int_cnt = 3
ret_int_array[0] = screen x coordinate of bottom left of viewport
ret_int_array[1] = screen y coordinate of bottom left of viewport

On Failure -> (-1)
ret_error_buf contains the error message string

The Size of the Viewport, width and height - returned both as screen and as normalized values

Keyword:
VIEWPORT_SIZE

Input:
param_array_cnt = 1
param_array[0] = Viewport number for the desired viewport (zero based)

Return Values:
On Success -> (1)

ret_float_cnt = 2
ret_float_array[0] = normalized window x size of viewport (0. to 1.)
ret_float_array[1] = normalized window y size of viewport (0. to 1.)
ret_int_cnt = 3
ret_int_array[0] = screen x size of viewport
ret_int_array[1] = screen y size of viewport

On Failure -> (-1)
ret_error_buf contains the error message string
8



Routine Descriptions
/*******************************************************************************
* Starts up connection to the EnSight client to drive it via commands.
* Parameters:
* host_toconnectto - Character buffer containing hostname
* where EnSight is running.
* sockport - Port number to use for socket( > 1024).
* print_error - if (1) will print errors to stderr when
* they occur.
* Return Values:
* On Success - Socket file descriptor to communicate with
* EnSight, if success.
* On Failure
* ENS_SOCKRANGE - Port number out of range. Must be > 1024.
* ENS_CONNECT - Connection to EnSight failed. EnSight must
* be ready for the external command connection.
* ENS_HANDSHAKE - The call to receive the handshake string
* from the EnSight client failed.
* ENS_HOSTTOOLONG - The hostname specified is too large.
******************************************************************************/

int
enscmddriver_connect(char *host_toconnectto,

int sockport,
int print_error)

/*******************************************************************************
* This routine sends the EnSight client a command and waits for an ok (or ERROR).
* Parameters:
* comm_socket - Socket to communicate on.
* cmd - command string being sent
* print_error - if (1) will print errors to stderr when
* they occur.
* Return Values:
* 1 - upon success
* -1 - upon failure
******************************************************************************/

int
enscmddriver_sendmesg(int comm_socket,

char *cmd,
int print_error)

/*******************************************************************************
* This routine sends the EnSight client a query command and waits for the results.
* Parameters:
* comm_socket - Socket to communicate on.
* query_keyword - Query keyword
* param_array_cnt - Count of parameters in array below.
* param_array - Floating point array containing any parameters
* for the query operation. The count above helps
* to clarify any changes that might be made to
* a particular query in the future. This will
* help to allow forward/backward compatibility
* and prevent users from always having to use
* the latest library.
9



*
* ***NOTE: the next 6 need to be passed in by address(ex. &ret_int_cnt)
* because return values will be placed in the ...cnt variables
* and space will be allocated for the others and return
* information will be placed in this space.
* ret_charstr_cnt - Count of strings concatenated into string return
* ret_char_str - String(s) returned from query and separated
* by NULLs. When the user finishes with the
* information they must use free() to deallocate.
* ret_int_cnt - Count of integers in return int array.
* ret_int_array - Array of integer return values. When the user
* finishes with the information they must use
* free() to deallocate.
* ret_float_cnt - Count of floats in return float array.
* ret_float_array - Array of float return values. When the user
* finishes with the information they must use
* free() to deallocate.
*
* ret_error_buf - Buffer for error return string. This buffer
* should be preallocated to 500 characters by
* the caller. It will contain a NULL terminated
* error string when the return value is -1.
*
* Return Values:
* On Success - (1)
* On Failure - (-1) (See error_buffer above)
*
******************************************************************************/

int
enscmddriver_query(int comm_socket,

char *query_keyword,
int param_array_cnt,
float *param_array,
int *ret_charstr_cnt,
char **ret_char_str,
int *ret_int_cnt,
int **ret_int_array,
int *ret_float_cnt,
float **ret_float_array,
char ret_error_buf[500])

/*******************************************************************************
* This routine cleans up the connection to EnSight. This must
* be done before you exit, especially if your application is dieing
* because it received a signal. If the socket is not closed properly
* your port may become hung and you won’t be able to use it until
* it is cleared out by a reboot of your system or some other event.
*
* Parameters:
* comm_socket - Socket to communicate on.
*
* Return Values:
* None
******************************************************************************/

void
enscmddriver_disconnect(int comm_socket)
10


